SGM4890

GENERAL DESCRIPTION

The SGM4890 is a 1.1-W, fully integrated, audio power amplifier. It is designed to maximize audio performance in portable applications such as mobile phone. The portable application requires audio power amplifier has minimum of external components and can operate from a single 2.5V to 5.5V power supply. SGM4890 is capable of delivering 1.1W of continuous output power with less than 1% distortion (THD + N) when it drives an 8Ω speaker from a 5.0V power supply.

The SGM4890 features a low-power consumption shutdown mode, which is achieved by driving the shutdown pin with a logic low. Additionally, the SGM4890 features an internal thermal shutdown protection mechanism.

The SGM4890 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

For maximum flexibility, the SGM4890 provides an externally controlled gain (with resistors), as well as an externally controlled turn-on time (with the bypass capacitor). When using a 1µF bypass capacitor, it offers 110ms wake up time when V+ is equal to 5.0V.

The SGM4890 is available in CSP-9 and MSOP-8 packages. It operates over an ambient temperature range of --40 to +85 .

APPLICATIONS

Portable Systems MP3 Players Mobile Phone **PDAs** GPS

1.1 Watt Audio Power Amplifier

FEATURES

- Ideal for Notebook Computers, PDAs, and **Other Small Portable Audio Devices**
- 1.1W to 8-Ω BTL Load from 5V Supply at THD =1% (Typical)
- Excellent PSRR: Direct Connection to the Battery
- Fast Turn On Time
- Unity Gain Stable
- 2.5V to 5.5V Operation
- Shutdown Current: 0.01µA Typical
- Shutdown Pin is Compatible with 1.8V Logic
- **Operating Temperature Range** • **-40** to +85
- Small Packaging

PIN CONFIGURATIONS (Top View)

ELECTRICAL CHARACTERISTICS : TA = 25

DADAMETED	SYMBOL	CONDITIONS		SGM4890			
PARAMETER				MIN	TYP	MAX	UNITS
	IQ	V _{IN} = 0V, I _O = 0A,	V ₊ = +5V, No Load		4	8	mA
			V ₊ = +5V, 8 Ω Load		6	10	
			V ₊ = +3.6V, No Load		3.7		
Quiescent Power Supply Current			V ₊ = +3.6V, 8 Ω Load		5.7		
			V ₊ = +3.0V, No Load	_	3.5	7	
			V ₊ = +3.0V, 8 Ω Load		5.5	9	
			V ₊ = +2.6V, No Load	_	3.3		
			V ₊ = +2.6V, 8 Ω Load		5.3		
Shutdown Current	I _{SD}	V _{SHUTDOWN} = 0V,			0.01	4.0	μA
Shutdown Voltage Input High	V _{SDIH}			1.2			V
Shutdown Voltage Input Low	V_{SDIL}					0.4	V
Output Offset Voltage	Vos				1	50	mV
			V ₊ = +5V		1.10		w
Output Power (8 O)	Po	f = 1 kHz, THD+N=1%	V ₊ = +3.6V		0.58		
			V ₊ = +3.0V		0.40		
			V ₊ = +2.6V		0.30		
Total Harmonic Distortion + Noise	THD+N	$P_0 = 0.4$ Wrms, f = 1kHz			0.01		%
	PSRR	f = 217Hz	V ₊ = +5V		-66		dB
Power Supply Rejection Ratio			V ₊ = +3.6V		-63		
			V ₊ = +3.0V		-63		
			V ₊ = +2.6V		-62		
		f = 1kHz	V ₊ = +5V		-72		
			V ₊ = +3.6V		-68		
			V ₊ = +3.0V		-66		
			V ₊ = +2.6V		-64		
Wake –up Time	T _{wu}	C _{BYPASS} = 1µF	V ₊ = +5V		110		ms
			V ₊ = +3.6V		110		
			V ₊ = +3.0V		100		
			V ₊ = +2.6V		100		
Shut Down Time	T _{sdt}	8 Ω Load	V ₊ = +5V		10		μs
			V ₊ = +3.6V		16		
			V ₊ = +3.0V		17.8		
			V ₊ = +2.6V		17.8		

Specifications subject to changes without notice.

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM4890	SGM4890YG/TR	CSP-9	Tape and Reel, 3000	4890YG
	SGM4890YMS/TR	MSOP-8	Tape and Reel, 3000	SGM4890YMS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	6V
Input Voltage (-Vs) - 0.3 V to ((+Vs) +0.3V
Storage Temperature Range	to +150
Junction Temperature	150
Operating Temperature Range40	to +85
Lead Temperature Range (Soldering 10 sec)	
	260

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD. SG Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL APPLICATION

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{\text{OUT}\text{+}}$ or $V_{\text{OUT}\text{-}}$ Large Sine Signal Response

 $V_{\text{OUT+}}$ or $V_{\text{OUT-}}$ Large Sine Signal Response

Large Signal Step Response $V_{+} = 2.6V$ $V_{-} = 2.6V$ $V_{-} = -4.6V$ $V_$

Large Signal Step Response

TYPICAL PERFORMANCE CHARACTERISTICS

Large Signal Step Response

3V

40

2

 $V_{+} = 2.6V$

60

80

3

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs. Shutdown Voltage

PACKAGE OUTLINE DIMENSIONS

MSOP-8

PACKAGE OUTLINE DIMENSIONS

CSP-9

Note: All linear dimensions are in millimeters.

REVISION HISTORY

Location

09/2007—Preliminary Datasheet

11/2007—Data Sheet REV.A

SG Microelectronics Co., Ltd

A2608, NO.72 North Road Xisanhuan, Haidian District, Beijing, China 100037 Tel: 86-10-51798160/80 Fax: 86-10-51798180-803 www.sg-micro.com Page